Jupyter : Aplicação cliente-servidor que permite a edição e execução de notebooks via browser. Notebooks são documentos que contém código e elementos visuais como imagens, links, equações. A principal vantagem na utilização de notebooks é para a descrição de análises e seus resultados de forma dinâmica e interativa.
NumPy : Biblioteca Python para computação científica. Implementa arrays multidimensionais e permite a fácil execução de operações matemáticas e lógicas como ordenação, seleção, transformações, operações estatísticas básicas etc.
Matplotlib : Biblioteca Python 2D para a visualização e plotagem de gráficos. Pode ser utilizada para gerar diversos tipos de gráficos como histogramas, gráficos de barras, gráficos de pizza tudo de forma fácil e rápida.
Pandas : Esta biblioteca talvez seja a mais utilizada para análise de dados. Ela fornece ferramentas para manipulação de estruturas de dados de forma extremamente simples. Operações complexas que trabalham com matrizes e vetores podem ser facilmente realizadas com uma ótima performance.
Scikit-Learn : Biblioteca Python para trabalhar com Machine Learn (Aprendizado de Máquina). Contém diversos algoritmos implementados, métodos de análise e processamento de dados, métricas de avaliação etc. Essa é uma biblioteca extremamente útil para o cientista de dados.
NLTK: NLTK é uma plataforma líder para a construção de programas Python para trabalhar com dados de linguagem humana. Ele fornece interfaces fáceis de usar para mais de 50 corpora e recursos lexicais como o WordNet, juntamente com um conjunto de bibliotecas de processamento de texto para classificação, tokenização, stemming, tagging, análise e raciocínio semântico
Scrapy : Biblioteca Python para a raspagem ou coleta de dados a partir da Web. É possível coletar dados de sites, redes sociais, fóruns e diversos outros canais utilizando uma linguagem simples e objetiva. Extremamente útil para a geração de bases de dados.